文章编号: 2095-4980(2021)06-1033-05

Ku/Ka 四波段共馈低剖面赋形天线设计

张 军,李 杼,苏 萌

(92941部队44分队,辽宁 葫芦岛 125003)

摘 要:针对传统切换式多馈源的低剖面反射面天线结构复杂,不能多频段同时工作的问题,介绍了一款四波段单馈源低剖面环焦反射面天线及设计方法。该天线工作在四波段14~14.5 GHz, 11.45~12.75 GHz,19.6~21.2 GHz,29.4~31 GHz。整体天线采用双槽深波纹喇叭单馈源、通过口面场分布和多项式拟合过渡函数的方法构造的赋形副反射面和主反射面。用电磁仿真软件进行了建模仿真和验证。实测结果表明,整体天线较传统天线的效率提高12%以上,第一旁瓣<-14 dB,指标满足设计要求。

关键词: 赋形面; 过渡函数; 四波段; 口面场分布 中图分类号:TN820 文献标志码:A

doi: 10.11805/TKYDA2020115

Ku/Ka quad-band common-feed low-profile shaped antenna design

ZHANG Jun, LI Zhu, SU Meng

(Unit 92941 of PLA, Huludao Liaoning 125003, China)

Abstract: Traditional multi-band low-profile parabolic antennas bear the disadvantages of complex structure and the inability to multi-band work simultaneously. A novel design method is introduced in this paper. The proposed quad-band antenna works on the frequency of 14-14.5 GHz,11.45-12.75 GHz,19.6-21.2 GHz,29.4-31 GHz. The whole antenna adopts a two-slot-depths horn feed, shaped sub-reflector and main reflector. The reflectors are designed by the aperture field distribution function and polynomial transition function. The overall antenna structure is optimized with full-wave electromagnetic software. The test result shows the efficiency in the entire frequency band is improved by at least 12%, and the first side lobe is controlled below -14 dB, which meets the performance requirements. This design has been applied to actual equipment successfully.

Keywords: shaped reflector; transition function; quad-band; aperture field distribution

目前同步轨道卫星通信系统需求日新月异,用途越来越广泛,为了满足复合型多用途指挥战术要求,需要多频段、低剖面、功能齐全的车载卫星通信装备。传统的双频段低剖面天线装备中一般采用双馈源切换方式和切割 抛物面降低外形高度,但这样导致副面对主面的辐射漏失损耗大,天线辐射效率低等缺陷,尤其在Ku/Ka四频段 效率不到50%,短轴副瓣也只有-12 dBi左右。文献[1-2]仅讨论了Ku单频段低剖面天线,未涉及多频段低剖面天 线。本文采用口面场分布和多项式拟合赋形的方法,减少副面和主面短轴向辐射漏失,提高了天线辐射效率和增 益,降低了副瓣电平。而且四波段共用一个馈源,比起传统的多馈切换来说减少了面积遮挡,且可以多频段同时 工作,整体结构也更为紧凑。

1 基本参数

根据天线总体要求,采用经典设计理论^[3],确定天线主反射面的长轴直径 $D_L=1$ 000 mm,短轴直径为 $D_d=630$ mm,从而确定天线的焦径比 $F/D\approx0.265$,馈源对副面的半照射角为 $2\theta_m=38^\circ$,副面对主面的照射角在长轴方向为 $2\theta_{vm}=175^\circ$,短轴方向为 $2\theta_{vm}=114^\circ$ 。为了降低整体天线的旁瓣电平,副面直径取为主面直径的 0.1 倍。

第19卷

 L_2

W

 L_1

Fig.1 Diagram of the feed

图1 馈源结构图

2 馈源参数

双槽深波纹喇叭具有尺寸小,轴向短,相位中心变化小等优点,使用较为广泛^[3-4]。通过增加其波纹数量,优化张角和波纹参数,可扩展为 Ku/Ka 双频宽带使用^[5],具体天线馈源的结构和尺寸见图 1。

对槽深、槽间距、槽宽和张角进行优化,使得馈源半张角 θ_m 处锥削为-10~15 dB, 且 E 面和 H 面的等化良好。最终优化完成后,对应图中尺寸 a_i =17.3 mm, L_1 =25 mm, L_2 =8 mm,a=47 mm, θ =58°。通过仿真,可以得到馈源喇叭的归一化方向见图 2。可 见,喇叭天线在 Ku 波段锥削照射电平为-10 dB, Ka 频段照射电平为-15 dB 以下, 等化电平差在 1.8 dB 左右,满足设计要求。

3 天线面设计

3.1 天线口面场

主面口面场的选择对天线口面效 率、近旁瓣等有着重要影响。因为低轮 廓天线形状的特殊性,经典理论难以满 足要求,因此直接根据需要的方向图进 行数学拟合并与泰勒分布函数改造相 结合来实现口面场分布,式(1)提供了 口面场分布的数学依据:

$$F(R) = \begin{cases} e^{-iR^2}, & 55 \le R < 70\\ 1, & 70 \le R \le 480\\ e^{-bR^2}, & 480 < R \le 500\\ 0, & \text{others} \end{cases}$$
(1)

式中: *t* 为短轴边缘照射电平; *b* 为短 轴边缘照射电平; *R* 为长短轴尺寸。

为了兼顾天线增益和副瓣,天线长 轴的口面场,副面遮挡处一般取-8 dB 衰减,在主面边缘取-13 dB 衰减;而 在短轴处为保证近旁瓣要求,减少漏

失,增加效率。口面场在副面遮挡处衰减一般取-15 dB,在主面边缘处衰减取-25 dB。

3.2 主副面赋形设计

天线主副面的坐标系见图 3, (x,z)是主反射面上任意一点坐标, (x_s,z_s) 是副反射面上任意一点坐标, O 是馈源 相位中心, r 是副反射面上任意一点与 O 点的距离, r_m 是副反射面边缘到原点 O 的距离, S 是副反射面上任意点 (x_s,z_s) 到主反射面对应点(x,z)距离, D 为主面直径, Ds 为副面直径, θ 为 (x_s,z_s) 点对馈源相心的半张角, θ_m 为馈源 对副反射面边缘照明角, θ_v 是主反射面上点(x,z)与对应副反射面上点

 (x_{s},z_{s}) 的连线与 z 轴夹角, θ_{vm} 为极限值。

为了使天线电气性能最佳,而天线面的外轮廓又满足输入条件要求,必须根据微波光学原理对天线主副面赋形设计,需要同时满足能量守恒、反射定律、等光程条件,实现反射面各点处等幅同相条件。 3.2.1 能量守恒条件

馈源在 θ_m 到 θ 区域内能量之和等于主面 x_0 到 x_m 区域内能量之和。 根据图 3 几何关系,有:

$$\frac{\mathrm{d}x}{\mathrm{d}\theta} = \frac{f^2(\theta)\sin\theta}{F^2(x)x} (x|_{\theta=\theta\mathrm{m}} = x_0)$$
(2)

式中: f(θ)为馈源方向图函数; F(x)为主面口径场分布函数。根据馈源

 Fig. 3 Coordinates of a ring focus antenna on an elliptical surface
 图 3 赋形环焦反射面天线的几何坐标

方向图特性,使用轴对称圆形结构的高斯分布对馈源方向图进行逼近:

$$f^{2}(\theta) = e^{-p(\theta/\theta_{m})^{2}}$$
(3)

3.2.2 等光程条件

由馈源相位中心 O 点发出任何一条射线, 经副面和主面反射后到 XOY 面的路径应该相等, 这样在 XOY 面形 成等相位场分布, c 为常数项, 有:

$$r + \sqrt{\left(r\cos\theta - z\right)^2 + \left(x - r\sin\theta\right)^2} - z = c \tag{4}$$

3.2.3 主副面反射定律

根据反射定律,电磁波在主面反射满足:

$$\frac{\mathrm{d}z}{\mathrm{d}x} = \tan\frac{\theta_{\mathrm{m}}}{2} = \frac{x - r\sin\theta}{c - r(1 - \cos\theta)} z\Big|_{x = x_{\mathrm{m}}} = z_0 \tag{5}$$

电磁波在副面反射满足:

$$\frac{\mathrm{d}r}{r\mathrm{d}\theta} = -\frac{x - (c - 2r)\tan\frac{\theta}{2}}{c + x\tan\frac{\theta}{2}}r|_{\theta = \theta\mathrm{m}} = r_0 \tag{6}$$

根据以上公式,在 F(x)和 $f(\theta)$ 参数已知的情况下,给定 θ 值就可以求解出 x,r和 z值,就可以分别求出主副 面在长轴和短轴上的曲线。

由于天线主面在 XOY 投影面上是椭圆外形,为了由天线主面和副面的长轴和短轴曲线进一步推出天线的三 维曲面,还需要引入天线副面的过渡函数赋形公式如下:

$$f(\varphi) = a_0 + a_1\varphi + a_2\varphi^2 + a_3\varphi^3 + a_4\varphi^4 + a_5\varphi^5$$

式中 φ 对应旋转角度,而f(0)对应短轴曲线, $f(90^{\circ})$ 对应长轴曲线。

根据前一步计算的长轴和短轴的曲线,采用函数拟合的方法得到式中各项系数见表1。

表 1 多项式函数优化后赋值 Table 1 Polynomial function assignment

-	~0	~1	"J	«?	~5	
_	<i>a</i> 0	<i>a</i> 1	<i>az</i>	as	<i>a</i> 4	as
_	0	0	2.521 894 683 799 4E+00	1.575 207 860 922 2E-01	-2.880 725 623 582 8E+00	1.201 310 153 691 1E+00

根据以上公式,即可求出各个旋转角上的主、副面曲线,经过拟合即可得到主、副面上的全部三维坐标。根据实际天线面的大小和形状,一般可取 θ 的数据点为 50~100 点, φ 数据点为 36~72 点。本天线最终计算得到的 1/4 主面和副面的形状见图 4。

4 仿真与测试

根据前述方法分别建立主、副面的实体模型,并导入三维电磁仿真软件,同时加入馈源模型仿真。仿真模型 及仿真结果见图 5 和图 6。

图 7 为根据前述设计并加工出的天线实物。实测最终结果见表 2(根据测试标准, Ku 天线的交叉极化和 Ka 天线的轴比测试均采用在微波暗室内的正交双极化测试法)。结果表明,该天线的方向图波束宽度、旁瓣、包络

1035

(7)

等电气指标均满足国际国内卫星组织的相关标准,天线实测效率达到 62%以上。

表 2 (a)天线测试结果(Ku	波段)
· · · · · · · · · · · · · · · · · · ·	www.)

Table2 (a)antenna test results (Ku-band)							
polarization	<i>f</i> /GHz	SLL(AZ)/dB	SLL(EZ)/dB	gain/dBi	cross-polar/dB	efficiency/(%)	
	11.45	-15.28/-16.32	-17.43/-15.74	38.60	37.27	62	
	11.75	-16.53/-15.46	-16.39/-19.13	38.76	39.72	62	
vertical polarization	12.25	-15.81/-17.32	-19.54/-16.85	39.42	40.96	65	
	12.50	-17.75/-16.28	-18.39/-21.07	39.40	38.83	64	
	12.75	-14.76/-15.37	-16.87/-18.54	39.84	37.60	66	
	14.00	-18.10/-17.58	-17.73/-19.25	40.50	41.83	66	
horizontal polarization	14.25	-16.92/-16.47	-18.94/-18.38	40.68	36.26	65	
-	14.50	-15.79/-16.05	-16.95/-19.63	40.80	35.22	65	
表 2 (b)天线测试结果(Ka 波段)							
Table2 (b)antenna test results (Ka-band)							
antenna f/GHz SLL(AZ)/dB SLL(EZ)/dB gain/dBi axle ratio/dB efficiency/(y/(%)					
	polarization vertical polarization horizontal polarization	polarization f/GHz polarization 11.45 11.75 11.75 vertical polarization 12.25 12.50 12.75 14.00 14.25 polarization 14.25 14.50 14.50 Tab 14.50	Table2 (a)antenna test polarization f/GHz SLL(AZ)/dB 11.45 -15.28/-16.32 11.75 -16.53/-15.46 polarization 12.25 polarization 12.50 12.50 -17.75/-16.28 12.75 -14.76/-15.37 horizontal polarization 14.25 horizontal polarization 14.25 14.50 -15.79/-16.05 表 2 (b)天线测试 Table2 (b)antenna test antenna f/GHz SLL(AZ)/dB SLL(EZ	Table2 (a)antenna test results (Ku-band) polarization f/GHz SLL(AZ)/dB SLL(EZ)/dB 11.45 -15.28/-16.32 -17.43/-15.74 11.75 -16.53/-15.46 -16.39/-19.13 vertical polarization 12.25 -15.81/-17.32 -19.54/-16.85 12.50 -17.75/-16.28 -18.39/-21.07 12.75 -14.76/-15.37 -16.87/-18.54 horizontal polarization 14.00 -18.10/-17.58 -17.73/-19.25 14.50 -15.79/-16.05 -16.95/-19.63 38 14.50 -15.79/-16.05 -16.95/-19.63 表 2 (b)天线测试结果(Ka 波段) Table2 (b)antenna test results (Ka-band) antenna f/GHz SLL(AZ)/dB SLL(EZ)/dB gain/d	Table2 (a)antenna test results (Ku-band) polarization f/GHz SLL(AZ)/dB SLL(EZ)/dB gain/dBi 11.45 -15.28/-16.32 -17.43/-15.74 38.60 11.75 -16.53/-15.46 -16.39/-19.13 38.76 vertical polarization 12.25 -15.81/-17.32 -19.54/-16.85 39.42 12.50 -17.75/-16.28 -18.39/-21.07 39.40 12.75 -14.76/-15.37 -16.87/-18.54 39.84 14.00 -18.10/-17.58 -17.73/-19.25 40.50 horizontal polarization 14.25 -16.92/-16.47 -18.94/-18.38 40.68 14.50 -15.79/-16.05 -16.95/-19.63 40.80 Ex 2 (b)天线测试结果(Ka 波段) Table2 (b)antenna test results (Ka-band) 40.80 Table2 (b)antenna test results (Ka-band)	Table2 (a)antenna test results (Ku-band) polarization //GHz SLL(AZ)/dB SLL(EZ)/dB gain/dBi cross-polar/dB 11.45 -15.28/-16.32 -17.43/-15.74 38.60 37.27 11.75 -16.53/-15.46 -16.39/-19.13 38.76 39.72 11.75 -16.53/-15.46 -16.39/-19.13 38.76 39.72 12.25 -15.81/-17.32 -19.54/-16.85 39.42 40.96 12.50 -17.75/-16.28 -18.39/-21.07 39.40 38.83 12.75 -14.76/-15.37 -16.87/-18.54 39.84 37.60 horizontal polarization 14.00 -18.10/-17.58 -17.73/-19.25 40.50 41.83 14.25 -16.92/-16.47 -18.94/-18.38 40.68 36.26 14.50 -15.79/-16.05 -16.95/-19.63 40.80 35.22 表 2 (b)天线测试结果(Ka 波段) Table2 (b)antenna test results (Ka-band) 35.22 antenna f/GHz SLL(AZ)/dB SLL(EZ)/dB gain/dBi axle ratio/dB efficienc	

	unconnu	J/ OIL	SEE(TE)/ GE	SEE(EE)/ GB	Banna and	une fune ub	
	receiver	19.6	-22.54/-17.18	-16.97/-23.24	43.24	1.15	62
		20.4	-17.48/-18.95	-17.31/-18.87	43.75	1.13	64
		21.2	-19.75/-16.11	-16.47/-19.13	44.00	1.16	63
-		29.4	-14.75/-17.29	-14.89/-18.58	46.88	1.12	63
	transmit	30.2	-15.30/-16.86	-15.30/-18.11	46.97	1.07	62
		31.0	-16.61/-15.08	-14.48/-18.05	47.20	1.14	62

5 结论

参考文献:

本文介绍了 Ku/Ka 四波段单馈源馈电的环焦双反射面赋形天线的 设计方法。采用双槽深波纹喇叭单馈源,通过口面场分布和多项式拟 合过渡函数的方法构造主、副反射面。采用该方法完成了实物天线的 设计,通过三维电磁仿真软件仿真和实际测试验证,充分证明了本方 法用于设计多频段、高增益、低旁瓣双反射面赋形天线的可行性。本 项目成果已成功应用于实际型号中。

Fig.7 Photo of antenna 图 7 天线实物图

[1] 陆晓家,李文锴,何山红. 一种改进型的椭圆波束卡塞格伦天线[J]. 中国电子科学研究院学报, 2018,2(4):186-189. (LU Xiaojia,LI Wenkai,HE Shanhong. A modified Cassegrain reflector antenna with an elliptic beam of large axial ration[J]. Journal of China Academy of Electronics and Information Technolog, 2018,2(4):186-189.) doi:10.3969/j.issn. 1673-5692.20.